Inverse Limits of Solvable Groups
نویسندگان
چکیده
In this paper we generalize to groups of Galois type some results of P. Hall on finite solvable groups [l; 2; 3]. We need, in a modified form, some results of van Dantzig: the definition of supernatural numbers (which are related to van Dantzig's universal numbers) and Theorem 5, which he proved for ordinary ¿>-Sylow subgroups [6]. Lemmas 1 and 4 and the method of proof in Theorem 5 are due to Täte [S]. A topological group G is of Galois type if it is compact and totally disconnected. In any Galois type group the open normal subgroups form a neighborhood base at the identity. Every closed subgroup is the intersection of the open subgroups containing it [4]. Whenever M and N are open normal subgroups of G and NZ)M we shall write 0jv for the natural homomorphism of G/M onto G/N (these quotient groups are finite) and <£# for the natural homomorphism of G onto G/N. G is the inverse limit of the groups {G/N}, N ranging over the open normal subgroups of G. Conversely, the inverse limit of finite groups is of Galois type.
منابع مشابه
Integrality of L-Betti numbers
The Atiyah conjecture predicts that the L-Betti numbers of a finite CW -complex with torsion-free fundamental group are integers. We show that the Atiyah conjecture holds (with an additional technical condition) for direct and inverse limits of directed systems of groups for which it is true. As a corollary it holds for residually torsion-free solvable groups, e.g. for pure braid groups or for ...
متن کامل-betti Numbers
The Atiyah conjecture predicts that the L-Betti numbers of a finite CW -complex with torsion-free fundamental group are integers. We show that the Atiyah conjecture holds (with an additional technical condition) for direct and inverse limits of groups for which it is true. As a corollary it holds for residually torsion-free solvable groups, e.g. for pure braid groups or for positive 1-relator g...
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملNILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM
In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...
متن کاملClassification of solvable groups with a given property
In this paper we classify all finite solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010